Enrollment No:	Exam Seat No:
	Exam Seat 110.

C. U. SHAH UNIVERSITY

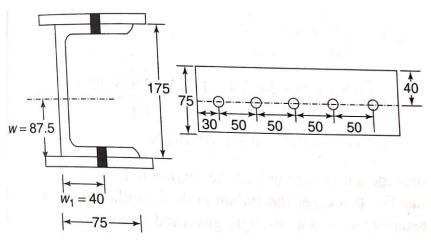
Summer Examination-2020

Subject Name: Structural Design-I

0Subject Code: 4TE07STD1 Branch: B.Tech (Civil)

Semester: 7 Date: 25/02/2020 Time: 10:30 To 01:30 Marks: 70

Instructions:


- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the following questions:	(14)
	a)	Find the spacing of two legged 8 mm , Fe-250 stirrups is used and $V_{\rm us}/d$ is 230 kN/m.	01
	b)	Calculate the flange width of beam for the following data. Depth of flange 200mm, web width 400 mm and effective span is 8000mm.	01
	c)	What is load factor in steel structure design?	01
	d)	If any steel structure is designed by the plastic theory instead of elastic theory then how much percentage of materials can be saved?	01
	e)	The maximum shear stress in a rectangular beam istimes of an average shear stress.	01
	f)	In doubly reinforced rectangular beam, the allowable stress in compression steel isthe permissible stress in tension in steel.	01
	g)	The assumed overall depth of a T-beam is taken as of the span when it is simply supported at ends.	01
	h)	What is the section modulus of square having side "a" with its diagonal parallel to the xx-axis?	01
	i)	What is the shape factor of square having side "a" with its diagonal parallel to the xx-axis?	01
	j)	What shall be the appropriate minimum diameter of Fe 415? Polygonal links in a rectangular column with 230 mm least lateral dimension and reinforced with only 25 mm.	01
	k)	What shall be the appropriate minimum pitch of Fe 415? Polygonal links in a rectangular column with 230 mm least lateral dimension and reinforced with only 25 mm.	01
	1)	Draw sketch of six legged stirrups.	01
	m)	A cantilever beam of 2 m span is projected from a column of 400 mm width. The cantilever beam is provided with 4 bars of 20mm diameter of Fe-415 grade. Effective cover is 50 mm. Determine the anchorage length. Concrete grade is M20.	01
	n)	Draw the sketch of anchorage length for above question.	01

Q-2		Attempt all questions (
	(a)	Design a rectangular reinforced concrete beam section to carry a factored				
		bending moment of 200 kNm, factored shear force of 120 kN, and a				
		factored torsion moment of 75 kNm. Concrete mix grade M20 and				
		HYSD steel of grade Fe-415 are to be used in construction. Consider the				
		ratio of D/b is equal to two.				
	(b)	Find the factored load capacity of column having ar	ea 30	$00000 \text{ mm}^2 \text{ with}$	04	
		2% longitudinal steel. Concrete grade M25 and steel	2% longitudinal steel. Concrete grade M25 and steel grade Fe-415.			
Q-3		Attempt all questions			(14)	
	(a)	For the given data find the type of flanged section based on its neutral				
		axis position.				
		Width of flange	=	1500 mm		
		Depth of beam	=	750 mm		
		Width of web	=	300 mm		
		Flange thickness	=	100 mm		
		Effective cover	=	50 mm		
		Effective area of tensile reinforcement provided	=	4310 mm^2		
		Grade of concrete and steel	=	M15, Fe-250		
	(b)	Find out the collapse load for a propped cantilever b	eam	subjected to udl	07	
		over entire span of L (m). intensity of udl is w kN/m.				
Q-4		Attempt all questions			(14)	
	(a)	A column ISHB 300 @ 576.8 N/m is to support a load of 600 kN. The				
		column section is to be spliced at a height of 2.5 m. design the splice				
		plate. Assume $f_y = 250MPa$.				
	(b)	Describe the behavior of bolted connections using	g bl	ack bolts under	04	
		increasing load.				
Q-5		Attempt all questions			(14)	
	(a)	Design a header plate connection for an ISMB 400 beam to carry a			10	
	reaction of 140 kN due to factored loads. The connection is to flan					
		an ISSC 200 column. Use Fe 410 grade steel ($f_y =$	250	MPa) and M20		
		bolts of grade 4.6.				
	(b)	Explain the stress strain curve of concrete.			04	
Q-6		Attempt all questions			(14)	
	(a)	Proportion and design a reinforced concrete isolated footing for a column				
		of size 450 × 450 mm transmitting an axial load of 1500 kN and uniaxial				
		bending moment of 500 kNm at service state. the soil investigations at				
		the site have indicated that the unit weight, safe bearing capacity and				
		angle of repose of soil are 20 kN/m ³ , 150 kN/m ² and 30° respectively.				
		M20 grade of concrete and FE-415 are used.				
	(b)	Define the slender column in terms of column dimen	sion	S.	02	
Q-7		Attempt all questions			(14)	
		Determine the tensile strength of an ISME 175 wh			14	
		gusset plates through the two flanges by two rows o	f 16	mm bolts with a		
		connection length of 200 mm.				

Q-8 Attempt all questions

(14) 14

The floor slab of a room with internal dimensions of $5.5 \text{ m} \times 4.0 \text{ m}$ is to carry a live load due to flooring, finishing and partitions of 1.5 kN/m^2 . Design the slab if it is simply supported on all four edges when the corners are held down. Use M20 and HYSD Fe-415.

